If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-4n=0
a = 3; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·3·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*3}=\frac{0}{6} =0 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*3}=\frac{8}{6} =1+1/3 $
| 16x+5x+3=78 | | 8(2 | | 8(2 | | -8t-4=-8-7t | | 73=56+x | | 2x+4x+6=48 | | 2x+4x+3=48 | | x+24=3x+36 | | -2(-x-4)=-12 | | -10x-6=3 | | -2b+8=-4+7-7b | | 8x-1x=0 | | 2.5x-7=5x+8 | | 9/8x=-5 | | 6x+24+4x+2x+4=58 | | 4xx2=9 | | 6x+24-3x+x+4=58 | | -3x7x=0 | | 6x+24-3x(x+4)=58 | | X+6y=63 | | -2(-x+4)=12 | | 2(2y-4)=3(2y-1)+9=0 | | 2.x-5=36 | | x+x+36=48 | | -2(-x-4)=12 | | 8+9m=-4+5m | | 8+8m=-4+5m | | 16x+36=132 | | 16x36=132 | | 7x-4=(3x+28)° | | ⅙k+8=5 | | x^2+x^2=12.7279220614 |